Decision-Oriented Environmental Mapping with Radial Basis Function Neural Networks
نویسنده
چکیده
The work deals with development and application of Radial basis functions neural networks (RBFNN) for spatial predictions. Geostatistical tools for spatial correlation analysis (variography) are used to qualify and quantify the estimation results. Geostatistical analysis is performed on the residuals obtained at the training and test sample locations. Variogram of residuals explores spatial correlation remaining after RBF modelling and is an independent criteria of the results quality. Networks with different number of hidden units and different RBF functions were considered. Extended RBF networks allow to obtain not only the estimate itself by also the estimate variance, which qualifies the prediction map. Two real case studies were considered: radioactive soil contamination after the Chernobyl fallout and heavy metal sediments in Lake Geneva. Decision-oriented prediction maps accompanied by maps of estimation errors and “thick contours” are presented as the outputs for decision making.
منابع مشابه
On the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملEnvironmental data mining and modeling based on machine learning algorithms and geostatistics
The paper presents some contemporary approaches to the spatial environmental data analysis, processing and presentation. The main topics are concentrated on the decision–oriented problems of environmental and pollution spatial data mining and modelling: valorisation and representativity of data with the help of exploratory data analysis, topological, statistical and fractal measures of monitori...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملDeveloping a Radial Basis Function Neural Networks to Predict the Working Days for Tillage Operation in Crop Production
The aim of this study was to determine the probability of working days (PWD) for tillage operation using weather data with Multiple Linear Regression (MLR) and Radial Basis Function (RBF) artificial networks. In both models, seven variables were considered as input parameters, namely minimum, average and maximum temperature, relative humidity, rainfall, wind speed, and evaporation on a daily ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003